Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxicon ; 193: 73-83, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33515573

RESUMO

The venom color variation of Crotalus durissus terrificus (Cdt) is attributed to the presence of the toxin L-amino acid oxidase (LAAO). During the venom milking routine of Instituto Butantan, we have noticed that most venoms of captive Cdt specimens show a yellowish color, while most venoms of wild specimens are white. Here we describe a comparative analysis of long-term captive (LTC) and recently wild-caught (RWC) Cdt, focusing on LAAO variation. For the identification of LAAO in individual venoms, four different approaches were employed: evaluation of the enzymatic activity, SDS-PAGE, Western blotting, and ELISA. In addition, mass spectrometry analysis was performed using pooled samples. Although some variation among these methodologies was observed, it was possible to notice that the presence of LAAO was significantly higher in the venom of LTC individuals. LAAO was identified in 60-80% LTC specimens and in only 10-12% of RWC specimens. Furthermore, this enzyme accounts for 5.6% of total venom proteins of LTC Cdt pooled venom, while it corresponds to only 0.7% of RWC Cdt pooled venom. These findings strongly suggest that captive maintenance increases the expression of LAAO in Cdt venom.


Assuntos
Venenos de Crotalídeos , Crotalus , L-Aminoácido Oxidase/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Humanos , Venenos de Serpentes
2.
PloS One, v. 16, n. 6, e0253050, jun. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3859

RESUMO

The Brazilian lancehead (Bothrops moojeni) has a wide distribution in Brazil and represents a serious public health hazard. Previous works reported that the symptoms of snakebites caused by B. moojeni juveniles’ bites were mainly related to coagulation, while those caused by adults’ bites had a more prominent local damage. In this work, we analyzed the venoms of B. moojeni at different life stages to better understand the ontogeny shift in this species. Snakes were grouped by age and sex, and venom pools were formed accordingly. Compositional analyses by one-dimensional electrophoresis (1-DE), chromatography, and mass spectrometry revealed that ontogenetic changes might be mostly related to phospholipase A2 (PLA2) and metalloproteases. Regarding the venoms functional aspect, proteolytic, L-amino acid oxidase, PLA2, and coagulant in vitro activities were assayed, but only the first and the last ones showed age-related changes, with the venom of snakes up to 1 year-old displaying lower proteolytic and higher coagulant activities, while those from 2 years-old onward presented the opposite relation. The venoms of 3 years-old snakes were exceptions to the compositional and functional pattern of adults as both venoms presented profiles similar to neonates. Sex-related differences were observed in specific groups and were not age-related. In vivo experiments (median lethal dose and hemorrhagic activity) were statistically similar between neonates and adults, however we verified that the adult venom killed mice faster comparing to the neonates. All venoms were mostly recognized by the antibothropic serum and displayed similar profiles to 1-DE in western blotting. In conclusion, the Brazilian lancehead venom showed ontogenetic shift in its composition and activities. Furthermore, this change occurred in snakes from 1 to 2 years-old, and interestingly the venom pools from 3 years-old snakes had particular characteristics, which highlights the importance of comprehensive studies to better understand venom variability.

3.
Toxicon X, v. 193, p. 73-83, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3504

RESUMO

The venom color variation of Crotalus durissus terrificus (Cdt) is attributed to the presence of the toxin L-amino acid oxidase (LAAO). During the venom milking routine of Instituto Butantan, we have noticed that most venoms of captive Cdt specimens show a yellowish color, while most venoms of wild specimens are white. Here we describe a comparative analysis of long-term captive (LTC) and recently wild-caught (RWC) Cdt, focusing on LAAO variation. For the identification of LAAO in individual venoms, four different approaches were employed: evaluation of the enzymatic activity, SDS-PAGE, Western blotting, and ELISA. In addition, mass spectrometry analysis was performed using pooled samples. Although some variation among these methodologies was observed, it was possible to notice that LAAOs presence were significantly higher in the venom of LTC individuals. LAAO was identified in 60-80% LTC specimens and in only 10-12% of RWC specimens. Furthermore, this enzyme accounts for 5.6% of total venom proteins of LTC Cdt pooled venom, while it corresponds to only 0.7% of RWC Cdt pooled venom. These findings strongly suggest that captive maintenance increases the expression of LAAO in Cdt venom.

4.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200018, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33101399

RESUMO

BACKGROUND: Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. METHODS: Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. RESULTS: Electrophoretic profiles of male's and female's venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female's and male's venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. CONCLUSION: Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32922444

RESUMO

BACKGROUND: South American rattlesnakes are represented in Brazil by a single species, Crotalus durissus, which has public health importance due to the severity of its envenomation and to its wide geographical distribution. The species is subdivided into several subspecies, but the current classification is controversial. In Brazil, the venoms of C. d. terrificus and C. d. collilineatus are used for hyperimmunization of horses for antivenom production, even though the distinction of these two subspecies are mostly by their geographical distribution. In this context, we described a comparative compositional and functional characterization of individual C. d. collilineatus and C. d. terrificus venoms from three Brazilian states. METHODS: We compared the compositional patterns of C. d. terrificus and C. d. collilineatus individual venoms by 1-DE and RP-HPLC. For functional analyzes, the enzymatic activities of PLA2, LAAO, and coagulant activity were evaluated. Finally, the immunorecognition of venom toxins by the crotalic antivenom produced at Butantan Institute was evaluated using Western blotting. RESULTS: The protein profile of individual venoms from C. d. collilineatus and C. d. terrificus showed a comparable overall composition, despite some intraspecific variation, especially regarding crotamine and LAAO. Interestingly, HPLC analysis showed a geographic pattern concerning PLA2. In addition, a remarkable intraspecific variation was also observed in PLA2, LAAO and coagulant activities. The immunorecognition pattern of individual venoms from C. d. collilineatus and C. d. terrificus by crotalic antivenom produced at Butantan Institute was similar. CONCLUSIONS: The results highlighted the individual variability among the venoms of C. durissus ssp. specimens. Importantly, our data point to a geographical variation of C. durissus ssp. venom profile, regardless of the subspecies, as evidenced by PLA2 isoforms complexity, which may explain the increase in venom neurotoxicity from Northeastern through Southern Brazil reported for the species.

6.
J. venom. anim. toxins incl. trop. dis ; 26: e20200018, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135146

RESUMO

Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. Methods: Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. Results: Electrophoretic profiles of male's and female's venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female's and male's venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. Conclusion: Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.(AU)


Assuntos
Animais , Mordeduras de Serpentes , Venenos de Serpentes , Espectrometria de Massas , Bothrops , L-Aminoácido Oxidase , Fosfolipases A2 , Produtos Biológicos
7.
J. venom. anim. toxins incl. trop. dis ; 26: e20200016, 2020. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135158

RESUMO

South American rattlesnakes are represented in Brazil by a single species, Crotalus durissus, which has public health importance due to the severity of its envenomation and to its wide geographical distribution. The species is subdivided into several subspecies, but the current classification is controversial. In Brazil, the venoms of C. d. terrificus and C. d. collilineatus are used for hyperimmunization of horses for antivenom production, even though the distinction of these two subspecies are mostly by their geographical distribution. In this context, we described a comparative compositional and functional characterization of individual C. d. collilineatus and C. d. terrificus venoms from three Brazilian states. Methods: We compared the compositional patterns of C. d. terrificus and C. d. collilineatus individual venoms by 1-DE and RP-HPLC. For functional analyzes, the enzymatic activities of PLA2, LAAO, and coagulant activity were evaluated. Finally, the immunorecognition of venom toxins by the crotalic antivenom produced at Butantan Institute was evaluated using Western blotting. Results: The protein profile of individual venoms from C. d. collilineatus and C. d. terrificus showed a comparable overall composition, despite some intraspecific variation, especially regarding crotamine and LAAO. Interestingly, HPLC analysis showed a geographic pattern concerning PLA2. In addition, a remarkable intraspecific variation was also observed in PLA2, LAAO and coagulant activities. The immunorecognition pattern of individual venoms from C. d. collilineatus and C. d. terrificus by crotalic antivenom produced at Butantan Institute was similar. Conclusions: The results highlighted the individual variability among the venoms of C. durissus ssp. specimens. Importantly, our data point to a geographical variation of C. durissus ssp. venom profile, regardless of the subspecies, as evidenced by PLA2 isoforms complexity, which may explain the increase in venom neurotoxicity from Northeastern through Southern Brazil reported for the species.(AU)


Assuntos
Animais , Crotalus , Venenos Elapídicos , Fosfolipases A2 , Localizações Geográficas
8.
Journal of Venomous Animals and Toxins Including Tropical Diseases, v. 26, 20200018, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3291

RESUMO

Background: Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. Methods: Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. Results: Electrophoretic profiles of male’s and female’s venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female’s and male’s venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. Conclusion: Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.

9.
J Venom Anim Toxins Incl Trop Dis, v. 26, e20200016, ago. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3191

RESUMO

Background: South American rattlesnakes are represented in Brazil by a single species, Crotalus durissus, which has public health importance due to the severity of its envenomation and to its wide geographical distribution. The species is subdivided into several subspecies, but the current classification is controversial. In Brazil, the venoms of C. d. terrificus and C. d. collilineatus are used for hyperimmunization of horses for antivenom production, even though the distinction of these two subspecies are mostly by their geographical distribution. In this context, we described a comparative compositional and functional characterization of individual C. d. collilineatus and C. d. terrificus venoms from three Brazilian states. Methods: We compared the compositional patterns of C. d. terrificus and C. d. collilineatus individual venoms by 1-DE and RP-HPLC. For functional analyzes, the enzymatic activities of PLA2, LAAO, and coagulant activity were evaluated. Finally, the immunorecognition of venom toxins by the crotalic antivenom produced at Butantan Institute was evaluated using Western blotting. Results: The protein profile of individual venoms from C. d. collilineatus and C. d. terrificus showed a comparable overall composition, despite some intraspecific variation, especially regarding crotamine and LAAO. Interestingly, HPLC analysis showed a geographic pattern concerning PLA2. In addition, a remarkable intraspecific variation was also observed in PLA2, LAAO and coagulant activities. The immunorecognition pattern of individual venoms from C. d. collilineatus and C. d. terrificus by crotalic antivenom produced at Butantan Institute was similar. Conclusions: The results highlighted the individual variability among the venoms of C. durissus ssp. specimens. Importantly, our data point to a geographical variation of C. durissus ssp. venom profile, regardless of the subspecies, as evidenced by PLA2 isoforms complexity, which may explain the increase in venom neurotoxicity from Northeastern through Southern Brazil reported for the species.

10.
Toxicon, v. 186, p. 67-77, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3129

RESUMO

Concerning snake venoms, numerous authors worked with different species of Bothrops focusing on the ontogeny of these animals. However, according to PubMed database, no results on studies related to Bothrops jararacussu ontogeny were displayed until now. This fact led us to develop a greater interest in the venom ontogenetic variability of this species, which is little explored so far. Among snakes of the genus Bothrops, B. jararacussu was previously described as the one with highest myotoxic activity. Another peculiarity was also observed in its venom: a low rate of immunogenicity. In addition, its activity is not efficiently neutralized by the specific antibothropic serum. Considering these particularities, we performed an ontogenetic study of B. jararacussu using venom samples from newborns of the same litter (<6 months) and adults (>24 months). Our results identified two distinct profiles in the venom of these animals: young individuals with little PLA2 K-49 and more proteases; and adults with a lot of the same myotoxic PLA2, but less proteases. The HPLC and SDS-PAGE profiles corroborated our findings. Adults showed more hemorrhagic activity in vivo than juveniles, while adult males showed less activity when compared to females. In vivo myotoxicity activity was higher in adults than in juveniles. Immune recognition assays showed different results for the distinct venom.

11.
Toxicon, v. 184, p. 127-135, set. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3073

RESUMO

Various factors, such as geographical origin, climate, sex, age and diet can influence the composition and pathophysiological activities of snake venoms. In this study, we examined the sexual and ontogenetic variations in the venom of Bothrops leucurus, a pitviper responsible for more than 80% of the snakebites in the state of Bahia, northeastern Brazilian. The venoms of 31 snakes were pooled according to sex and age (young, adult and old) and screened by SDS-PAGE (in reducing and non-reducing conditions), reverse-phase high performance liquid chromatography (RP-HPLC), gelatin zymography, and immunoblotting with therapeutic bothropic antivenom (BAV) from the Instituto Butantan. The electrophoretic and chromatographic profiles showed intraspecific ontogenetic variation, whereas sexual variations were less evident. All venoms showed gelatinolytic activity associated with 50–75 kDa protein bands. In addition, all venoms, regardless of the snakes' sex and age, cross-reacted to similar extents with BAV. Our findings show that B. leucurus venom changes during ontogenetic development and demonstrate sexual differences in its composition, indicating differences in biological activity.

12.
Toxicon ; 184: 127-135, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17742

RESUMO

Various factors, such as geographical origin, climate, sex, age and diet can influence the composition and pathophysiological activities of snake venoms. In this study, we examined the sexual and ontogenetic variations in the venom of Bothrops leucurus, a pitviper responsible for more than 80% of the snakebites in the state of Bahia, northeastern Brazilian. The venoms of 31 snakes were pooled according to sex and age (young, adult and old) and screened by SDS-PAGE (in reducing and non-reducing conditions), reverse-phase high performance liquid chromatography (RP-HPLC), gelatin zymography, and immunoblotting with therapeutic bothropic antivenom (BAV) from the Instituto Butantan. The electrophoretic and chromatographic profiles showed intraspecific ontogenetic variation, whereas sexual variations were less evident. All venoms showed gelatinolytic activity associated with 50–75 kDa protein bands. In addition, all venoms, regardless of the snakes' sex and age, cross-reacted to similar extents with BAV. Our findings show that B. leucurus venom changes during ontogenetic development and demonstrate sexual differences in its composition, indicating differences in biological activity.

13.
PLoS One ; 14(9): e0222206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513632

RESUMO

Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.


Assuntos
Bothrops/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Animais , Bothrops/genética , Eletroforese em Gel de Poliacrilamida/métodos , Feminino , Masculino , Espectrometria de Massas , Camundongos , Plasma , Venenos de Serpentes/genética
14.
PLoS One, v. 14, n. 9, e0222206, sep. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2833

RESUMO

Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.

15.
PLoS One ; 14(9): e0222206, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17188

RESUMO

Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.

16.
J Proteomics ; 186: 56-70, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30026101

RESUMO

Intraspecific venom variability has been extensively reported in a number of species and is documented to be the result of several factors. However, current evidence for snake venom variability related to captivity maintenance is controversial. Here we report a compositional and functional investigation of individual and pooled venoms from long-term captive (LTC) and recently wild-caught (RWC) B. jararaca snakes. The composition of individual venoms showed a remarkable variability in terms of relative abundance of toxins (evidenced by 1-DE and RP-HPLC), enzymatic activities (proteolytic, PLA2, and LAAO) and coagulant activity, even among captive specimens. Thus, no compositional and functional pattern could be established to assign each individual venom to a specific group. Conversely, pooled venom from LTC and RWC snakes showed no significant differences regarding protein composition (characterized by 1-DE and shotgun proteomics), enzymatic activities (proteolytic, PLA2 and LAAO) and biological function (coagulant, hemorrhagic and lethal activities), except for edematogenic activity, which was more prominent in RWC venom pool. Additionally, both pooled venoms displayed similar immunoreactivity with the bothropic antivenom produced by Instituto Butantan. Taken together, our results highlight the complexity and the high intraspecific variation of B. jararaca venom, that is not influenced at a discernible extent by captivity maintenance. BIOLOGICAL SIGNIFICANCE: Bothrops jararaca snakes are one of the main causes of snakebites in Southeastern Brazil. Due to its medical interest, the venom of this species is the most studied and characterized among Brazilian snakes and captive B. jararaca specimens are maintained for long periods of time in our venom production facility. However, knowledge on the influence of captivity maintenance on B. jararaca venom variability is scarce. In this report, we described a high compositional and functional variability of individual venoms from LTC and RWC B. jararaca snakes, which are not observed between LTC and RWC pooled venoms. This intraspecific variability is more likely to be due to genetic/populational differences rather than "captivity vs wild" conditions. In this regard, data generated by the present work support the use of venom from captive and wild snakes for antivenom production and scientific research. Moreover, the data generated by this study highlight the importance of analyzing individual venom samples in studies involving intraspecific venom variability.


Assuntos
Bothrops/imunologia , Venenos de Crotalídeos/química , Proteínas/análise , Proteômica/métodos , Animais , Animais Selvagens/imunologia , Animais de Zoológico/imunologia , Antivenenos/imunologia , Biodiversidade , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/imunologia , Enzimas/análise , Enzimas/fisiologia , Proteínas/fisiologia , Especificidade da Espécie
17.
J Proteomics ; 174: 17-27, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29275045

RESUMO

Considering that the scarcity of venom represents a huge challenge for biochemical and functional studies of Micrurus species (coral snakes), in this report we describe for the first time the influence of pilocarpine administration prior to venom milking on the yield and protein composition of Micrurus corallinus venom. The administration of pilocarpine resulted in an increase of about 127% in the volume of venom milked, with similar protein content. Venoms showed similar protein bands distribution and intensity by SDS-PAGE and equivalents RP-HPLC profiles. Our proteomic analysis showed that venoms milked in the presence and absence of pilocarpine presented comparable protein profiles, in terms of protein composition and relative abundance. The toxins identified were assigned to 13 protein families and represent the most complete M. corallinus venom proteome described so far, in terms of number of protein families identified. Our data indicate that the administration of pilocarpine prior to venom milking increases the venom yield and does not change significantly the venom composition of M. corallinus. The employment of pilocarpine represents a useful approach to increase the yield of venom not only for Micrurus species, but also for other genera of snakes with limitations regarding the amount of venom available. SIGNIFICANCE: In this report, we evaluated the influence of pilocarpine administration prior to venom milking in the overall composition of M. corallinus venom. We showed that the use of pilocarpine 10min before M. corallinus venom milking increases venom yield by ~127%. Not only the volume of venom obtained is higher, but also the protein concentration of both venoms is similar, opposing the idea that a more diluted venom is obtained as a result of pilocarpine administration, observed in non-front-fanged snakes. Shotgun proteomics analysis revealed that venom milked with and without the use of this drug showed similar overall protein composition and relative abundances. In addition, our proteomic approach allowed the identification of 13 toxin families in M. corallinus venom, representing the most complete M. corallinus venom proteome described so far. Moreover, two of these toxin families were identified for the first time in the venom of this species. Thus, considering the scarcity of Micrurus venom for biochemical and functional studies, we highlighted the usefulness of pilocarpine administration prior to venom milking to increase the venom yield of these snakes.


Assuntos
Cobras Corais , Venenos Elapídicos/química , Pilocarpina/farmacologia , Proteoma/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Venenos Elapídicos/análise , Eletroforese em Gel de Poliacrilamida , Proteoma/análise , Proteômica
18.
J Proteomics, v. 186, p. 56-70, ago. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2552

RESUMO

Intraspecific venom variability has been extensively reported in a number of species and is documented to be the result of several factors. However, current evidence for snake venom variability related to captivity maintenance is controversial. Here we report a compositional and functional investigation of individual and pooled venoms from long-term captive (LTC) and recently wild-caught (RWC) B. jararaca snakes. The composition of individual venoms showed a remarkable variability in terms of relative abundance of toxins (evidenced by 1-DE and RP-HPLC), enzymatic activities (proteolytic, PLA2, and LAAO) and coagulant activity, even among captive specimens. Thus, no compositional and functional pattern could be established to assign each individual venom to a specific group. Conversely, pooled venom from LTC and RWC snakes showed no significant differences regarding protein composition (characterized by 1-DE and shotgun proteomics), enzymatic activities (proteolytic, PLA2 and LAAO) and biological function (coagulant, hemorrhagic and lethal activities), except for edematogenic activity, which was more prominent in RWC venom pool. Additionally, both pooled venoms displayed similar immunoreactivity with the bothropic antivenom produced by Instituto Butantan. Taken together, our results highlight the complexity and the high intraspecific variation of B. jararaca venom, that is not influenced at a discernible extent by captivity maintenance. Biological significance: Bothrops jararaca snakes are one of the main causes of snakebites in Southeastern Brazil. Due to its medical interest, the venom of this species is the most studied and characterized among Brazilian snakes and captive B. jararaca specimens are maintained for long periods of time in our venom production facility. However, knowledge on the influence of captivity maintenance on B. jararaca venom variability is scarce. In this report, we described a high compositional and functional variability of individual venoms from LTC and RWC B. jararaca snakes, which are not observed between LTC and RWC pooled venoms. This intraspecific variability is more likely to be due to genetic/populational differences rather than "captivity vs wild" conditions. In this regard, data generated by the present work support the use of venom from captive and wild snakes for antivenom production and scientific research. Moreover, the data generated by this study highlight the importance of analyzing individual venom samples in studies involving intraspecific venom variability.

19.
J Proteomics, v. 174, p. 17-27, mar. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2412

RESUMO

Considering that the scarcity of venom represents a huge challenge for biochemical and functional studies of Micrurus species (coral snakes), in this report we describe for the first time the influence of pilocarpine administration prior to venom milking on the yield and protein composition of Micrurus corallinus venom. The administration of pilocarpine resulted in an increase of about 127% in the volume of venom milked, with similar protein content. Venoms showed similar protein bands distribution and intensity by SDS-PAGE and equivalents RP-HPLC profiles. Our proteomic analysis showed that venoms milked in the presence and absence of pilocarpine presented comparable protein profiles, in terms of protein composition and relative abundance. The toxins identified were assigned to 13 protein families and represent the most complete M. corallinus venom proteome described so far, in terms of number of protein families identified. Our data indicate that the administration of pilocarpine prior to venom milking increases the venom yield and does not change significantly the venom composition of M. corallinus. The employment of pilocarpine represents a useful approach to increase the yield of venom not only for Micrurus species, but also for other genera of snakes with limitations regarding the amount of venom available.

20.
J. Proteomics ; 186: p. 56-70, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15468

RESUMO

Intraspecific venom variability has been extensively reported in a number of species and is documented to be the result of several factors. However, current evidence for snake venom variability related to captivity maintenance is controversial. Here we report a compositional and functional investigation of individual and pooled venoms from long-term captive (LTC) and recently wild-caught (RWC) B. jararaca snakes. The composition of individual venoms showed a remarkable variability in terms of relative abundance of toxins (evidenced by 1-DE and RP-HPLC), enzymatic activities (proteolytic, PLA2, and LAAO) and coagulant activity, even among captive specimens. Thus, no compositional and functional pattern could be established to assign each individual venom to a specific group. Conversely, pooled venom from LTC and RWC snakes showed no significant differences regarding protein composition (characterized by 1-DE and shotgun proteomics), enzymatic activities (proteolytic, PLA2 and LAAO) and biological function (coagulant, hemorrhagic and lethal activities), except for edematogenic activity, which was more prominent in RWC venom pool. Additionally, both pooled venoms displayed similar immunoreactivity with the bothropic antivenom produced by Instituto Butantan. Taken together, our results highlight the complexity and the high intraspecific variation of B. jararaca venom, that is not influenced at a discernible extent by captivity maintenance. Biological significance: Bothrops jararaca snakes are one of the main causes of snakebites in Southeastern Brazil. Due to its medical interest, the venom of this species is the most studied and characterized among Brazilian snakes and captive B. jararaca specimens are maintained for long periods of time in our venom production facility. However, knowledge on the influence of captivity maintenance on B. jararaca venom variability is scarce. In this report, we described a high compositional and functional variability of individual venoms from LTC and RWC B. jararaca snakes, which are not observed between LTC and RWC pooled venoms. This intraspecific variability is more likely to be due to genetic/populational differences rather than "captivity vs wild" conditions. In this regard, data generated by the present work support the use of venom from captive and wild snakes for antivenom production and scientific research. Moreover, the data generated by this study highlight the importance of analyzing individual venom samples in studies involving intraspecific venom variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...